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Jets at RHIC

 Can measure jet modification at lower energies- allows exploration
of Vs, dependence of energy loss

» Versatility of RHIC provides ability to study jet modification in
different collision geometries, system sizes, and energy densities
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The PHENIX Detector

2012 PHENIX Detector
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PHENIX central arms: |n]| <0.35,A¢=n

* Charged particle tracks are reconstructed using the Drift Chamber (DC), the
Pad Chamber (PC), and the collision point

* Neutral clusters are measured in the Electromagnetic Calorimeter (EMCal).

EMCals (PbSc & PbGl) measures % y, and some hadrons (with lower
efficiency).



Jets in PHENIX

* 2012 Vs, = 200 GeV p+p and Cu+Au

 Jets reconstructed using the anti-k, algorithm with R=0.2
* track p; > 500 MeV/c
 clusters energy > 500 MeV

* Jet-level cuts

 number of constituents >3

* 0.2 < charged fraction < 0.7

* jet axis from edge: |n| > 0.05, A¢ > 0.12
Note: No single hard particle requirement in a jet

* Centrality-dependent response matrices generated by embedding
PYTHIA p+p jets into real Cu+Au events



Jets in PHENIX: Jet Energy Scale
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Simulation: PYTHIA p+p embedded in Cu+Au data
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* Foreach p; 1, bin, Pr peco/ P 1rue distribution is examined

* Due to missing neutral hadronic energy and tracking inefficiency, on

average, PHENIX gets =70% of the true jet energy

* For 0-20%, the UE increases the p; .., up to 3.2% (1.7%) at 15 GeV/c (26
GeV/c) relative to that in p+p events



Jets in PHENIX: Jet Energy Resolution
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* The width of p; oo/ P1 1re distribution is =16-24%

* In PHENIX, the resolution is not driven by EMCal & DC resolution but by
jet-by-jet fluctuations

* For 0-20%, the UE increases the p; ¢, resolution up to 2.7% (1.3%) at 15
GeV/c (26 GeV/c) relative to that in p+p events



Jets in PHENIX

Similar jet reconstruction method
proven to work in p+p and d+Au!!!

arXiv:1509.04657 [nucl-ex] mmp

For d+Au jet results, please see
* talk by Ali Hanks (Sept. 29 at 11:50)
e poster #0421 by D. Perepelitsa

= . d+Au, |'s,,, =200 GeV
G 10 . anti-k,, R=0.3 jet
2 s n v
1S . )
:10_2 + m:«s e m . PHENIX
eET o+ T T -
1;\»—10'4 o >* + sl n
g 10-5 s .«////,,,,,/ * + sl
219 E 9 0-20%, x10° v, ke e
& 0-40%, x10° o *
%108 0-60%, x10? III p+p ) |
% 10 60-88%, x10 ZZJNLO pQCD e
1.5 _]
W 77 ]
N 1_0% / %//A ///M‘,,/ N . =
+ —W// 7 /// // -
< osE 2
12 20 30 40 50
P, (GeV/c)



Jets in PHENIX

Similar jet reconstruction method %:g

proven to work in p+p and d+Au!ll &
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For d+Au jet results, please see 107
* talk by Ali Hanks (Sept. 29 at 11:50) =
* poster #0421 by D. Perepelitsa 3

Cu+Au comes with challenges

d+Au, \'San = 200 GeV
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e Stronger underlying event contribution

-> choice of smaller cone size
e Fake jet contribution
-> fake jet subtraction
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E 10'4 = Cu+Au, 0-20%, anti—k,, R=0.2 o Raw Jet
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Data driven method of estimating and statistically subtracting fake
jet contribution
* For events in which jet is not reconstructed, position (n, ¢) of tracks and
position (n, ¢) of clusters are randomly shuffled
* Jet reconstruction performed in these shuffled tracks and clusters
-> returns estimated fake jet
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Data driven method of estimating and statistically subtracting fake
jet contribution
* For events in which jet is not reconstructed, position (n, ¢) of tracks and
position (n, ¢) of clusters are randomly shuffled
* Jet reconstruction performed in these shuffled tracks and clusters
-> returns estimated fake jet
* Estimated fake jet yield is statistically subtracted from the raw jet yield
-> returns estimated signal jet



Signal jets

Purity =

Fake jet Raw jets
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* Fake jet contribution is both p;and centrality dependent; the
contribution being largest for central collisions and at low p;
e for 0-20%, purity is 70% (93%) at 15 GeV/c (23 GeV/c)
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Per-event Counts/Bin

Fake jet HUING simulation study

Simulation: HIJING Cu-+Au, 0-20% (b= 0.0-5.6 fm) & Simulation: HWJING Cu+Au, 20-40% (b= 5.6-8.1 fm)
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* Matched jet: Reco jet which is within AR < 0.2 of true jet
* Fake jet: Reco jet which is not matched
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Fake jet estimation procedure gives comparable result!

Fake jet contribution analyzed alternately by re-running the analysis
with cluster and track selections of > 2 GeV 12



Jet yields
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e Spectra unfolded using SVD method (cross-checked using iterative
Bayesian method)
* detector effects
* centrality dependent underlying event fluctuations



Jet suppression: R,, Vs. p;

RAA
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At high p-, consistent with 1 within the uncertainties
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Jet suppression: R,, Vs. p;
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Suppression shows centrality dependence
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Jet suppression: R,, Vs. p;
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Jet suppression: R,, Vs. p;
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* For central collisions, jets are suppressed by approximately a factor
of two
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Jet suppression: R, Vs. p;
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* R probes relative central vs. peripheral (60-90%) jet production

* Relatively reduced systematics
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Jet suppression: R, vs. N
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R, shows strong centrality dependence and no p; dependence



RAA

Jet suppression: comparison
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* ATLAS resultis R=0.2 R, for 38 < p; < 44 GeV
* Both results asymptote towards the same value
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Jet suppression: theory teaser
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e Calculation done for R=0.2 but for Au+Au and different centrality

classes

* |s suppression stronger than expected within this model?
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Conclusion

* The ratios of jet spectra from different centrality selections of Cu+Au
collisions show a strong modification of jet production at all p;
* Jets are found to be suppressed by approximately a factor of
two in central Cu+Au collisions as compared to p+p collisions
* Suppression shows no p; dependence

* Work progressing towards finalizing the results and heading towards
publication



Backup
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Evaluation of systematic uncertainty

Variation is made in unfolding procedure. The default data is unfolded with
modification in unfolding procedure.

@ Shape of input spectrum: The input spectrum is obtained by modifying the power of
the truth spectrum by +0.5.
o Unfolding is performed with Bayes method (default is SVD method).

Variation is made in simulation. The default data is unfolded with modified
response matrix.

o Energy scale

@ EMCal energy scale: The energy of EMCal clusters is varied by +3%

@ DC p7 scale: The pT of tracks is varied by p7 dependent way: 2% for pT < 10 GeV /c and
increased linearly such that it is 4% at 30 GeV /c.

Same variation is made in both data and simulation. The modified data is
unfolded with modified response matrix.

o Jet-level cuts:
@ Default: nc >=3 && cf > 0.2 && cf < 0.7. Variation: nc >=5 && of > 0.2 && cf < 0.6
o Acceptance

@ Fiducial cut: The reconstructed jets are required to lie within tighter phase space.
@ East/West arm: East arm yield is unfolded with response matrix for east arm and west arm yield
is unfolded with response matrix for west arm.

o Fake jet

® Default: Cluster energy > 0.5 GeV, track pr > 0.5 GeV /c. Variation: Cluster energy > 2.0
GeV, track p7 > 2.0 GeV/c.



Per-event Counts/Bin

Fake jet simulation
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* Matched jet: Reco jet which is within AR < 0.2 of true jet
* Fake jet: Reco jet which is not matched
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Jets in PHENIX: Jet Energy Scale
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* Foreach p; 1, bin, Pr peco/ P 1rue distribution is examined

* Due to missing neutral hadronic energy and tracking inefficiency, on

average, PHENIX gets =70% of the true jet energy

* For 0-20%, the UE increases the p; .., up to 3.2% (1.7%) at 15 GeV/c (26

GeV/c) relative to that in p+p events
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Jets in PHENIX: Jet Energy Resolution
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* The width of p; oo/ Pr 1re distribution is =16-24%

* In PHENIX, the resolution is not driven by EMCal & DC resolution but by
jet-by-jet fluctuations

* For 0-20%, the UE increases the p; .., resolution up to 2.7% (1.3%) at 15 .
GeV/c (26 GeV/c) relative to that in p+p events



d+Au results
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Central d+Au shows suppression consistent
with modest CNM E-loss, but enhancement in
peripheral d+Au challenging to understand
within these models
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